

Composite Thermal Damage Measurement with Handheld FTIR

April 9, 2013 Brian D. Flinn, Ashley Tracey, and Tucker Howie University of Washington

Composite Thermal Damage Measurement III with Handheld File

- Motivation and Key Issues
	- Damage detection in composites requires different techniques than metals
	- Incipient thermal damage occurs below traditional NDE detection limits

FAA Sponsored Project Information

- Principal Investigators & Researchers
	- Brian Flinn (PI)
	- Ashley Tracey (PhD student, UW-MSE)
	- Tucker Howie (PhD student, UW-MSE
- FAA Technical Monitor
	- David Galella (year 3)
	- Paul Swindell (year 1 & 2)
- Industry Participation
	- The Boeing Company (Paul Shelley, Paul /Lbl8001 Tw 0

Background

Continuation of existing project (year 3 of 3)

Years 1 and 2 (A2 Technologies, Boeing and U of DE)

Characterization of homogeneous thermal damage

- Ultrasound
- Short beam shear (SBS)
- **Microscopy**
- Handheld FTIR (ExoScan)

Calibration curve for FTIR detection of thermal damage (SBS data)

Mapped surface of localized thermal damage

Year 3 (UW and Boeing)

3-D characterization of localized thermal damage

Include contact angle and fluorescence spectroscopy

FTIR guided repair of thermal damage

Test repair

Thermal Damage vs. Detection Method

- SBS, ultrasound, and microscopic analysis of composites with thermal damage
	- Properties degrade before detection possible need method to detect incipient thermal damage (ITD)

Short Beam Shear Strength Retention vs. Temp./Time

Investigate ITD of composites with various inspection techniques

- Characterize composite samples and panels with controlled thermal damage using various methods:
	- Contact angle (CA)
	- Fluorescence
	- FTIR
- Can results be related to SBS values and detect thermal damage?

Materials and Process

- Toray 3900/T800 composites with various levels of thermal damage
	- Provided from Year 1 & 2 research
	- SBS samples thermally exposed in air
	- Panels with localized thermal damage in vacuum
- Characterize toolside (resin rich) and sanded (resin poor) surfaces
	- Sand surfaces with random orbital sander using 120 grit $3M$ Al₂O₃ sanding pads
- Measurement techniques: CA, fluorescence, FTIR

Materials and Process – Fluorescence

Sample

- Sample absorbs excitation light and emits light at longer wavelength than the absorbed light (fluorescence).
- Measure changes in intensity and wavelength at max intensity $\left(\begin{array}{c} 1 \end{array}\right)$ of fluorescence emission

Materials and Process – FTIR

- Mid-IR data region: 4000 cm^{-1} to 650 cm⁻¹
- Diffuse reflectance sampling interface
- Data collection: 120 coadded scans with 8 cm-1 resolution for background and specimen

ExoScan FTIR

An infrared beam path for diffuse reflectance

- CA on sanded surface lower than toolside surface
- No significant correlation between SBS values and CA measurement – 415, 445, 475, 505 °F

Year 3 Results: FTIR Verifications:

- FTIR measurements on resin rich surface of SBS consistent with previous results
	- Oxidation peaks increase with damage

• Signal varies based on sample orientation

–

Year 1 & 2 Results: Localized Damage

• Hot spots created $\overline{6}$ 7 • 3 temperatures – 440, 465, 490 °F (10) \bullet 19 • 2 panels each \mathbf{M}

- FTIR Map of Surface Damage
	- Blue is low damage
	- Brown is high damage

–

- Apply multivariate analysis
- Surface map thermal damage (all panels)
- 1st set of panels- mechanical testing (SBS, Tg)
- 2nd set of panels scarf repair guided by FTIR – Map damage ply by ply during scarfing FTIR

• Benefit to Aviation

–

End of Presentation.

.

Research

komune

<u>im i sv</u>

U66 238 I

L MX